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ABSTRACT

A technique for measuring wing twist currently in use at the National Transonic Facility is

described. The technique is based upon a single camera photogrammetric determination

of two dimensional coordinates with a fixed (and known) third dimensional coordinate.

The wing twist is found from a conformal transformation between wind-on and wind-off

2-D coordinates in the plane of rotation. The advantages and limitations of the technique

as well as the rationale for selection of this particular technique are discussed. Examples

are presented to illustrate run-to-run and test-to-test repeatability of the technique in air

mode. Examples of wing twist in cryogenic nitrogen mode are also presented.

INTRODUCTION

Model deformation may be defined as the change in shape of a model (particularly the

wings and control surfaces) under aerodynamic load in a wind tunnel. This change in the

design geometry can cause differences between the acquired and expected wind tunnel

results if the expected results are based upon rigid body assumptions. Differences can also

occur between acquired wind tunnel data and computational predictions based upon rigid

body assumptions. These differences can lengthen and degrade the aircraft design

process. The measurement of model deformation has thus been of interest for over 20

years and was identified as especially desirable for the National Transonic Facility (NTF)

as early as the mid 1970's. More recently, widespread interest in the potential for

measuring surface pressure distributions with pressure sensitive paints (PSP) has renewed

the importance of model attitude and deformation measurements under aerodynamic

loads, because of requirements to ratio wind-offand wind-on images between which the

model has moved and changed shape.

The fundamental technique used to measure model deformation continues to be

photogrammetry as was the case 20 years ago, but today electronic imagers are used in

place of film cameras. The rapid development of relatively low cost electronic imaging,

largely driven by the consumer video market, coupled with improvements in low cost

computing have enabled the application of video photogrammetric techniques to a number

of different types of measurement problems, including model deformation. Video

photogrammetric systems are available, but these systems are generally not suitable for

incorporation into a wind tunnel data acquisition system because of the user interaction

required. In addition, limited view ports, low contrast targets, and limited illumination

options all contribute to the requirement for custom measurement systems for many wind

tunnels. In some wind tunnel tests (ref. 1) 2-dimensional video imagers have been



replacedwith 1-dimensional linear arrays and active infrared sources are used as targets

instead of passive rub-on or painted targets. This combination of 1-dimensional arrays and

active sources more readily enables automation of the measurement, provided the

installation of active targets is acceptable. A good example of this latter type of system is

the Optotrak ® system made by Northern Digital Inc. of Canada. This system is capable of

determining 3-dimensional locations at up to 600 Hz (for a limited number of markers).

Well-controlled laboratory static calibration tests at Northern Digital have shown that the

rms error in angle of attack (AOA) measurements can approach several arcseconds over a

range of 180 ° (ref. 2). One disadvantage of the Optotrak ® system is that infrared light

emitting diodes (LED's) must be placed in the model as markers. These markers must

then be activated in sequence to provide real time maker discrimination. Another problem

with the Optotrak ® measurement system is the relatively large size of the image sensors

which may make it difficult to adapt for use in some wind tunnels.

NATIONAL TRANSONIC FACILITY

MODEL DEFORMATION BACKGROUND

The National Transonic Facility is a fan-driven, closed-circuit, continuous-flow

pressurized wind tunnel (ref. 3). The 8.2 x 8.2 x 25-fl long test section has a slotted-wall

configuration. The wind tunnel can operate in an elevated temperature mode up to T =

140 ° F, normally using air, and in a cryogenic mode, using liquid nitrogen as a coolant, to

obtain a test temperature range down to about -250 ° F. Thermal insulation inside the

pressure shell minimizes energy consumption. The design total pressure range for the

NTF is from 15 psia to 130 psia. The combination of pressure and cold test gas can

provide a maximum Reynolds number of 120,000,000 at Mach 1.0, based on a chord

length of 9.75 inches. These characteristics afford full-scale Reynolds number testing for a

wide range of aircraft. Three types of investigations are possible: Reynolds number

effects at constant Math number and dynamic pressure; model aeroelastic effects at

constant Reynolds number and Math number; and Math number effects at constant

dynamic pressure and Reynolds number. The constraints imposed by operation in a high

pressure environment over such a wide range of temperatures have had a significant

impact on instrumentation development for the facility. Even though the facility has been

operational since August 1984, instrumentation development, improvement, and

optimization are still underway.

Since high aerodynamic loads encountered in the NTF can cause model deformations, a

requirement for an instrumentation system to measure model geometry at test conditions

was identified early. Several techniques were considered for the measurement including a

microwave modulated laser technique, moir6 contouring (ref. 4), scanning heterodyne

interferometry, holographic techniques (ref. 5), and photogrammetric techniques using

either film cameras or image dissector cameras. The photogrammetric approach was

selected for initial tests at the NTF largely due to earlier successful tunnel tests with film

cameras at the NASA Langley Eight Foot Transonic Pressure Tunnel (ref. 6). It was also

thought that there would be fewer tunnel implementation problems with photogrammetry

than with the other techniques. Two parallel photogrammetric efforts were initiated for
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the NTF. ITT was selected to develop the Stereo Electro-Optical Tracking System

(SETS) for the NTF (ref. 7). This rather large developmental effort to provide an

automated model deformation measurement system for the NTF was based upon image

dissector cameras which at the time were state of the art. A second, smaller, in-house

effort concentrated on film photogrammetry in order to more rapidly gain initial lab and

tunnel experience. However, in just a few years, the image dissector technology became

obsolete due to the rapid advancement in solid state image sensors. The decision was then
made to abandon the SETS and concentrate on the in-house effort. For initial tests at the

NTF film cameras were replaced with high resolution, 875 scan line, video tube cameras

because of inaccessibility of cameras which must be housed within the cryogenic, high

pressure plenum. Additional distortions introduced by video tube cameras into the

photogrammetric measurement were investigated and techniques to correct for these

distortions were evaluated (ref. 8). Initial model deformation tests with the tube-based

video photogrammetric technique in both air and cryogenic modes were made soon after

the NTF became operational (ref. 9).

Solid state video cameras were chosen for subsequent testing at the NTF since tunnel

vibration-induced electronic distortion associated with the camera tube construction

severely degraded the video data at low temperature and high pressure (ref. 10). In

addition, a personal computer (PC) controlled image acquisition system was employed to

eliminate the manual measurement of targets associated with the previous tube camera

technique. Camera calibration, data reduction procedures, and laboratory tests to

establish the uncertainty of this technique (denoted the Video Model Deformation or

VMD system) were reported in reference 10 where the accuracy for measuring wing

deflection was shown to be about 0.005 inch rms under best case wind-off ambient

conditions over a 26.5 inch semi-span test wing. It was also determined that wing twist

measurement errors as large as 0.2 ° might be experienced under best case wind-off

conditions, even with suitable least-squares fits to a large number of targets.

In order to improve the accuracy of the VMD system, laboratory studies were conducted

on the calibration and characterization of industrial and scientific solid state area array

cameras (refs. 11 and 12). These studies indicated that state of the art calibration

techniques and cameras, while helpful under ambient wind-off conditions, were not

limiting factors for VMD system performance during wind-on test conditions at the NTF.

The harsh environmental conditions at the NTF, which can severely degrade imagery, are

thought to be the limiting factors since temperature-induced contractions from ambient to

cryogenic conditions, coupled with the high refractive index in the test section, can lead to

bias errors in the photogrammetric measurement which are much larger than the precision

error. Attempts to develop suitable correction techniques to reduce or eliminate these bias

errors were unsuccessful. The technique currently used at the NTF to measure wing twist,

however, has the potential to partially compensate for some of the bias errors. The

rationale for development of this technique follows.



RATIONALE FOR WING TWIST TECHNIQUE

In discussions about model deformation measurement requirements among a number of

people involved in aerodynamic testing, the determination of the induced wing twist under

aerodynamic load is considered to be the primary concern, with wing deflection (bending)

being of secondary importance. Laboratory investigations, simple error analyses, and

preliminary wind tunnel tests at the NTF of wind-on and wind-off conditions indicated that

flow-induced wing twist measurement uncertainty was larger than desired. Therefore it

was decided to investigate ways to increase the resolution of the photogrammetric

technique in order to provide acceptable wing twist uncertainties.

The resolution of photogrammetric measurements generally is inversely proportional to

the field-of-view. Thus it is possible to increase resolution at the expense of limited field-

of-view by using longer focal length lenses to zoom in on the outboard portion of the wing

near the tip. However, once this is done the fuselage is no longer in the field of view to

serve as a reference in order to remove the sting deflection component from the wing

deflection. Thus, without fuselage deflection data, deflection measurements at various

semispan locations will contain this sting deflection component as well as the wing

bending. If wing bending is desired, calculated values for sting deflection must be used or

a second camera will be required to view the fuselage in order to measure sting deflection.

Photogrammetric data reductions are based upon the collinearity equations which relate

the 3-D object coordinates to the 2-D image plane coordinates. For high accuracy static

measurements the data reduction procedure of choice in photogrammetry is bundle

adjustment with self calibration (ref. 13). In this procedure a single camera is moved to a

number of locations (usually 8 or more) at which photographs are taken of a large number

of high contrast targets, properly illuminated retroreflective disks, distributed throughout

the test field. The 3-dimensional coordinates of the targets along with calibration

parameters associated with the camera are computed by a nonlinear least-squares

adjustment with the 2-dimensional image plane coordinates, initial guesses for the

unknowns, and photogrammetric scale as inputs. Generally, however, this method is not

suitable for wind tunnel use because of the dynamic nature of tests. In addition, restricted

viewing port locations and the inability to utilize widely distributed high contrast targets

limit the practicality of multi-camera applications. Even so, the bundle method with self

calibration can still be used for pre-test laboratory camera calibrations (ref. 12). For

photogrammetric data reductions where bundle adjustment is inappropriate, cameras are

calibrated before installation and the locations and pointing angles of the camera are

determined by a space resection method. In space resection, the 2-dimensional image

plane coordinates of a number of targets in the field of view with known locations are

used as input to a nonlinear least-squares solution of the collinearity equations fief. 13).

Three dimensional coordinates are then found by multi-camera triangulation, sometimes

referred to as space intersection, or simply intersection.

In multi-camera photogrammetric measurements of wing twist it is often difficult to

simultaneously optimize the lighting for two or more cameras given the wind tunnel



lighting restrictions and the difficult task of illuminating targets on a mirror-like wing

surface typical for the NTF, at various AOA setpoints. In addition, for multi-camera

photogrammetric measurements, computation ofcentroids from each image for each data

point is required along with precise time synchronization in order to match corresponding

fields from the cameras. Target identification and matching between the cameras is also

required. However, if a single camera photogrammetric technique can be used, which is

possible whenever one of the three target coordinates is known, then these problems are

lessened considerably. A single camera technique may also be more amenable to

automation. The major limitation of a single camera solution is the requirement that one

of the coordinates be known. The error in a single camera solution will then depend on

how well the third coordinate is known. In case all coordinates are unknown, then more

than one camera is required to find a solution.

A single camera photogrammetric solution is possible during pitch sweeps since motion is

confined to the pitch plane, at least for wind-of During wind-off pitch sweeps the Y

coordinate in the spanwise direction of each target does not change; only the X coordinate

in the flow direction and the Z coordinate in the vertical direction vary with pitch. If the Y

coordinates of all targets are known then a single camera solution exists. To reduce the

effect of dynamic yaw motion typical at the NTF, which causes Y to vary, 10 video fields

are recorded over a one second data recording interval, from which image plane

coordinate means are computed. The mean image plane coordinates are a good

approximation to the expected image plane coordinates without dynamic yaw, since over

small intervals of Y the collinearity object-image equations are very nearly linear even

though they are globally nonlinear.

Once X, Z coordinates are computed, the differences in pitch angle on the wing from

wind-off conditions to wind-on conditions are determined by means of a conformal two-

dimensional transformation of)(, Z coordinates at each semispan location. Least-squares

computation of the conformal transformation has several desirable properties. The change

in pitch angle and the corresponding displacements in X and Z are determined along with

estimates of precision for each variable as a byproduct of the least-squares reduction. The

conformal transformation also separates the angular and linear motion. For example,

transformations on a pure rotation about a displaced center of rotation will yield the angle

of rotation on/y, not the change in Z coordinates due simply to the offset from the center
of rotation.

A major optical instrumentation problem at the NTF has been the wide operational

temperature range. In addition to operational problems such as window frosting, the large

change in temperature can lead to uniform and non-uniform contractions. These tend to

introduce photogrammetric measurement bias errors which are very difficult to quantify.

Since attempts at using test section wall targets to account for these bias errors had not

been fully successful, it was decided to use wind-offpolars at each tunnel condition as

reference in the wing twist computation. Wind-on wing twist is then computed as the

difference in wing pitch angle between wind-off and wind-on conditions. Since the model

pitch angle at wind-on and wind-offtest points may not be equal, it is necessary to



subtract out the difference as determined by the primary model pitch angle measurement

system, to obtain flow-induced wing twist.

Since the wind-on and wind-off data are computed from images at nearly the same
temperature and pressure, the effects of these variables are lessened. If the same model
pitch angle is used for the wind-on and wind-off images, then the images from each will be
at nearly the same image plane location neglecting sting bending. Thus any potential
optical and sensor distortion will be comparable and tend to cancel. This error

cancellation is only approximated at wind-on test conditions due to sting deflection and

wind-on flow structure such as shock waves or boundary layers which can cause refractive
index variations.

EXPERIMENTAL PROCEDURE AND DATA REDUCTION

The optical technique used to determine wing twist data presented herein is based upon

the recording and analysis of digitized video images. A video signal from a standard RS-

170 solid state camera with 752 horizontal by 240 vertical pixels per field is routed to a

frame grabber controlled by a 386-33 MI-lz PC which records ten video fields in one

second into the frame grabber memory. Ten fields are recorded in order to reduce the

effects of dynamic yaw as discussed later. Only ten fields are presently recorded, instead

of the desired 60 fields in one second, in order to reduce data storage time and volume.

The contents of the grabber memory are stored on a hard disc with the current point

number as file name. Once the hard disc is full, currently 144 data points, the digital

images are transferred to an optical disc for archiving. The charge-coupled device (CCD)

video camera used for wing twist measurements at the NTF has an adjustable field

integration time in order to reduce the effects of dynamics on image recording. An 11.5 to

69 mm focal length remote zoom lens is currently used for imaging. Considerations when
calibrating zoom lenses for wind tunnel use are discussed in reference 14.

The CCD camera is mounted in a protective housing in the test section sidewall. The
camera looks over the fuselage at one of the wings of the model (fig. 1). The camera is

rotated 90 ° so that the horizontal X axis is vertical on the image plane in order to provide

additional viewing flexibility. In addition, the 90 ° rotation more nearly matches the

number of pixels vertically and horizontally across a target image since perspective causes

the images to be longer in the X (streamwise) direction. The protective housing is

equipped with insulation and sheath heaters to maintain camera temperature. The housing

is pressure rated to greater than 9 atm. In order to prevent frost, air heated by an inline

heater flows to a purge ring with a number of holes to direct the heated air over the inside

surface of the one inch thick fused silica window viewport. A purge air vent to

atmosphere maintains the camera housing pressure at approximately 1 atm.

Circular targets, with an approximate diameter of 5 mm, are applied to the wing surface
(fig. 2) with a Sharpie ®marking pen. it should be pointed out that such targets have not

been acceptable for all test conditions as discussed later. A template is used to place

targets in several rows in the streamwise direction. For the data reported here the target



rows were located at normalized semispan locations equal to 0.635, 0.778, and 0.922.

Initial Xand Y coordinates of the targets are determined from pressure tap and other

reference locations on the wing. The Z coordinates are estimated from cross-sectional

drawings of the wing.

Data recording is programmed with a script file for automatic acquisition upon trigger as

each data point is taken. The use of script files to automatically configure and control the

frame grabber menu driven program was convenient for initial developments. The initial

data reduction code was written in QuickBASIC 4.5. In order to reduce data acquisition

and reduction time, trial versions of code have been written in the C programming

language. In these versions, C language functions for the frame grabber are used to

control and configure the data recording as well to access frame grabber video memory so

that centroids can be computed without first saving the digital images as DOS files. Tests

using the trial code on high-contrast targets during both wind-off and wind-on tests at the

NASA Langley Transonic Dynamics Tunnel during several recent semispan tests were

encouraging.

The initial pre-test calibration procedure for the video optical technique determines those

camera parameters necessary for conversion from pixels to corrected image plane

coordinates. Techniques for determining these parameters are discussed in references 11

through 14. The need for extensive camera calibration is lessened somewhat by on-line

calibration using the model pitch angle for wind-offreference at the tunnel total

temperature and pressure test conditions.

The pointing angles and location of the camera in the tunnel coordinate system are

determined at the start of the test by photogrammetric resection during a wind-off

reference run. A known set of targets for resection are established by merging a range of

wind-off points into a single reference target field based on knowledge of the center of

rotation and rotation angle. The final calibration step requires a wind-off pitch sweep at

run temperature and pressure over the range of angles expected during the wind-on

testing.

Image plane coordinates are determined by gray level center-of-mass calculation after

inverting the gray scale and subtracting the background plus a few additional gray scales

The background is found from the maximum gray scale on the border of a window of

pixels which is slightly larger than the target images (ref. 11). The mean pixei coordinates

from the ten recorded fields are then transformed and corrected (including correction for

the photogrammetric principal point xp, Yv) to give units of length. The X and Z

coordinates are determined from a single camera solution of the following collinearity

equations



x = - c [m. (x- Xo)+ ml_(r- to) + m_ (z- zOJ
[m31 (X- X¢) t- m32 (Y - ]'Pc) + m33 (Z - Z¢)]

y = - c [m21 (X- Xc) + mz_ (Y- Yc) + mz_ (Z - Zc)]

[m31 (X- X¢) + m32 (Y- Y_) + m33 (Z - Zc)]

(1)

where x andy are the corrected image plane coordinates, c is the principal distance (or

camera constant) which will be slightly larger than the focal length, X, Y, and Z are the

object space coordinates of the target, Xc, Y¢, and Z_ are the coordinates of the perspective

center, and the m terms are elements of the following rotation matrix

mt] = cos _cos K"

m_z = sin co sin _ cos t¢ + cos 09sin ?¢

m_a = -cos cosin _cos to+ sin co sin I¢

m21 = cos _ sin tc

m22 =- sin co sin _ sin x + cos co cos x

mz_ = cos co sin _ sin ?¢+ sin cacos ?¢

m31 = sin

m32 = -sin co cos

m33 = COS CO COS #

(2)

The pointing angles of the camera, co, 4, and _', which rotate about the X, Y, and Z axes

respectively, are defined as positive if they are counterclockwise when viewed fi'om the

positive end of their axes. The X and Z coordinates determined from the collinearity

equations (1) for a single camera solution are given below

X = Xc + (Y- Yc) (Q206 - aj o.O / (a,_ a3 - al f16) (3)

z = zc- (x- xo)a,/a3 - (r- to)a2/a_ (4)

where

al = x m31 + c ml!

a2 = x m32 + c ml2

as = x mz._ + c m13

a4 = y m_t + c m2_

a5 = y m32 + c m_

a6 = y m33 + c m23

(5)

Expression (4) above is suitable for use at the NTF where the camera is rotated 90 ° so

that the horizontal X axis is vertical on the image plane. When the camera is not rotated,

the a3 term is nearly zero so that al, a2, and a3 in expression (4) should be replaced with

a4, as, and a6 respectively.



Thewind-ondataat eachsemispanlocationis thenmatchedwith awind-off pointwith
similarmodelpitchangleto determineangleanddisplacementandcorrespondingstandard
deviations,usingthefollowingleastsquaresconformaltransformation

X' = X cos 0- Z sin 0 + Tx

Z' =Xsin/9+ Zcos O+ Tz

(6)

where Tx and Tz are the translation terms in the X and Z directions and X' and Z' are the

coordinates of the wind-off reference point. If a nonlinear least-squares method is used

for the conformal transformation, at least two targets are required for one degree of

freedom. If a linear least-squares technique is used to solve for a and b rather than the

angle directly, where a = cos 0 and b = sin 0, a minimum of three targets is needed for

one degree of freedom since scale is implicit in the a and b terms without the constraint

that a 2 plus b 2 be equal to one. In the linear least-squares solution, the standard deviation

of the rotation angle is not computed directly, but is instead computed from the standard

deviations of the a and b coefficients. However, given three or more targets, nearly

identical results have been obtained with both nonlinear and linear-least squares conformal

transformations.

The model pitch angle, measured with an onboard accelerometer package, of the wind-off

reference point, ao_-, is added to the angle 0 found above in (6) to yield the streamwise

wing angle at a particular semispan location. The wing twist due to aerodynamic load,

Ot_st, is then found by subtracting the model pitch angle of the wind-on point, ao,, or

Oiwist= 0 + Otoff- ao. (7)

WING TWIST EXAMPLES AND ERROR CONSIDERATIONS

Examples of repeated measurements of wing twist are presented below. The total

uncertainty is expressed as the sum of systematic, or bias error, and precision, or

repeatability error. Bias errors are generally very difficult to determine under flow

conditions, whereas repeatability can be computed. In addition to laboratory and wind

tunnel wind-off determinations of error, run-to-run and test-to-test repeatabilities can be

used to gauge the adequacy of wing twist measurements with flow.

The uncertainty requirements for measurement of wing twist caused by aerodynamic loads

are unresolved. It has been suggested that the desired uncertainty for wing twist which

corresponds to an uncertainty of 0.01 ° for the model pitch angle is of the order of 0.05 °,

not 0.01% In other words, an uncertainty of the order of 0.05 ° in wing twist is thought to

have about the same magnitude effect on drag measurements as 0.01 ° uncertainty in model

pitch angle.

Wing twist measurement error can occur due to errors in the camera position and pointing

angles which are used in equations (2) through (5) to determine the X and Z coordinates.



Pre-test calibration errors can also contribute to wing twist error if, for instance, incorrect

lens distortion or frame grabber affinity corrections are used. Also note from equation (7)

that errors in wind-offreference angle, ao_; and wind-on angle, ao., will contribute to the

error in the wing twist angle, 8t.z,t, although generally the expected error in ao_iS much

smaller than the error in ao..

The Y coordinate, assumed to be known for the single camera solution, is constant and

well-behaved for ambient wind-offpitch sweeps. This is verified by independent

measurements in the test section as well as by the single camera technique, which typically

has an rms error of 0.03 ° or less when compared to the onboard inertial angle sensor

under wind-offambient conditions. However, Y is not constant during wind-on conditions

due to model yaw dynamics and wing bending. Lateral model motion is as large as :1:3

mm based on video images from a test section ceiling camera. This variation in Y

contributes to the precision error. Recording 10 images over one second to determine

mean image coordinates reduces this error in Y by averaging. Note also that any

remaining error in Y will be nearly the same for all wing targets. This is verified by plots

of the variation in the pixel coordinates of the targets as a function of time which show

that the variations are typically equal to within a fraction of a pixel even for total

excursions of several pixels. Thus as long as the image locations are not too far separated,

the errors in X and Z will also be similar and will tend to partially cancel out in the

conformal transformation (6) used to determine angle 0.

Wing bending causes the g coordinate of wing targets to decrease which causes a bias

error in the computation of X and Z. Assuming a 2nd order bending dependence, a wing

tip deflection of 20 mm, and semispan equal to 580 mm, the change in Yvalue due to wing

bending would be approximately 0.5 mm for targets at the tip. The shit_ in Y for targets

inboard of the tip would decrease rapidly. Targets at the same semispan station will

experience only slight differences in both bending and shifts in Y value. Note that it is this

small difference in bending between fore and ait targets which produces wing twist for

swept wings under load. For instance, fore and aft targets in the streamwise direction at

the wing tip of the previous example would experience a wing twist of almost -2 ° for a

30 ° swept-back wing. For two targets at the tip separated by 50 mm the difference in

bending would be 1.7 mm out of a total bending of 20 mm with a corresponding difference

in the shift of the Yvalue for the two targets of 0.06 mm. A shift in Yvalue of 0.06 mm

will cause a difference in image scale between the fore and aft targets of only 1.00003 for

typical object distances at the NTF (-1.8 m). For the geometry used at the NTF the error

in angle caused by this small difference in scale will be negligible compared to other error

sources.

Wind-off: Data illustrating possible error for the video wing twist technique without

flow, are presented in Table 1. Two wind-offruns taken on adjacent days were used to

compute apparent wing twist, which ideally should be zero without flow. The

temperature for both runs was nearly the same (-105 ° F), but the pressure for these two

runs differed considerably (20 and 94 psia). The AOA range for both runs was from 0 ° to

22 °. The mean error and standard deviation of the error for the 13 data points are
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presented for the three normalized semispan stations (Y/b�2) equal to 0.635, 0.778, and

0.922. Only three wing targets were used at Y/b/2 = 0.922, whereas four wing targets

were used at 0.778 and 0.635. The wing twist error for Y/b/2 = 0.922 is presented in

figure 3. The "error bars" in the figure represent the computed standard deviation from

the conformal least squares adjustment for each data point and should not be confused

with the standard deviations denoted by cr presented in Table 1. Note that normally the

wind-off run used as reference in determining wing twist would be taken within an hour at

the same total temperature and pressure as the wind-on run. Thus the data in Table 1 may

be taken to be a conservative estimate of possible wind-off error at non-cryogenic

conditions.

Y/b/2 0.635 0.778 0.922

mean -0.001 -0.018 -0.019

o- 0.018 0.026 0.016

Table 1. Error in degrees when measuring wing twist without flow using a wind-off run

from the previous day as reference.

Run-to-run repeatability: The repeatabilities of the video wing twist technique from run-

to-run on the same day of a low aspect-ratio research model during air runs are presented

for Mach number, M, of 0.3 and dynamic pressure, Q, of 153 psfin Table 2 and M = 0.9

and Q = 965 psfin Table 3. The results for 4 runs with 30 data points per run are shown

in Table 2. Results for 4 runs with 23 data points per run are shown in Table 3. Wing

twist, O_,t, was computed at normalized semispan stations 0.635, 0.778, and 0.922 with

equation (7). The mean and maximum of the computed sample standard deviation of each

repeat set of four data points are denoted as o',,_on and crm_ in the tables. The arcsector

AOA sensor (ARCSEC) is much less affected by test dynamics than the onboard

accelerometer so that o-m,_, for the ARCSEC variable may be taken as an indicator of

model pitch angle variability for repeat points. These two tables show that the mean

standard deviation in 0,_,,, for repeat points was less that 0.02 ° in air mode. In general the

standard deviation of the wing twist, O_,_t, is less than the standard deviation of the angle,

0, since any real variations in angle-of-attack settings between repeat points present in 0

are subtracted out when Otwist is computed. However, note that any error and variability in

the onboard angle of attack for aon or ao//will be added to the 0,,,,_, value. Plots of the

repeatability versus aon are presented in figures 4 and 5 for Y/b/2 = 0.922 which show

worse repeatability at higher aon, especially at the higher Mach number and Q. Data for

the other two semispan stations behaved similarly. The corresponding wing twist plots are

presented in figures 6 and 7 where the error bars (which are plotted if greater than the

symbol size) represent plus and minus one standard deviation of the four repeats at each

_on-
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Y/b/2 -- 0.635 0.778 0.922

...........A_cs_ aato,., a0_,_ ....A0 a0_,_ A0 a0_,_,t aO

cr,,,_, 0.010 0.011 0.008 0.009 0.007 0.012 0.006 0.018

or,,,,= 0.015 0.019 0.019 0.018 0.024 0.029 0.017 0.018

Table 2.

153 psf.

Run-to-run repeatability in degrees for four repeat air runs at M = 0.3 and Q =

Y/b/2 = 0.635 0.778 0.922

.........................._c_c........4._.,...........Aq._,:::..................4..q..............a..q._:_...............A.q.........
o',_o, 0.006 0.011 0.016 0.016 0.013 0.015

o-,,_ 0.012 0.015 0.029 0.032 0.025 0.033

.....4..q._,.,.:................4..q...........
0.014 0.016

0.037 0.051

Table 3. Run-to-run repeatability in degrees for four repeat air runs at M = 0.9 and Q =

965 ps£

Upright and inverted runs: Inverted model runs are conducted to determine flow

angularity by comparison to upright runs. For two inverted air runs targets were placed

on the underside of the opposite wing normally viewed to determine wing twist. When

the model was inverted 180 ° these targets were then in the field of view of the wing twist

camera so that wing twist measurements could be made to compare to upright runs at the

same conditions to provide an error check with flow. A wind-off inverted run was used as

reference to compute the wing twist, making proper allowance for change in angle signs

due to the inversion. Data from runs made atM= 0.3 and Q = 153 psfare presented in

Table 4 and data from runs made atM= 0.9 and Q = 965 psf are presented in Table 5.

Since the model pitch angle at which the data were taken did not necessarily coincide

between upright and inverted, linear interpolation (extrapolation for end points) was used

to determine twist values at the midpoint of the pitch angle between nearest data points.

Nine data points over a model pitch range of-3 ° to 5 ° were used in the computations for
Tables 4 and 5.

Y/'b/'2 0.635 0.778 0.922

mean -0.045 -0.018 -0.013

o" 0.035 0.023 0.032

Table 4. Mean and standard deviation, or, in degrees for the differences between upright

and inverted air runs at M = 0.3 and Q = 153 psf at various semispan locations, Y/b/2.

Y/b/2 0.635 0.778 0.922

mean -0.010 -0.002 0.038

cr 0.030 0.051 0.042

Table 5. Mean and standard deviation, o;, in degrees for the differences between upright

and inverted air runs at M = 0.9 and Q = 965 psfat various semispan locations, Y/b/'2.

12



Test-to-testrepeatability: Comparisonsof repeatrunsfrom two tests separated by over

five months are presented in Table 6. Linear interpolation to account for differences in

model pitch angle setpoint between the tests was used as described above. The mean and

standard deviation, or, of the differences are presented as a function of semispan location,

Mach number, and dynamic pressure. The number of data points used for these

comparisons varied from 18 to 26. Wing twist data for these runs at a semispan location

of 0.922 are presented in figures 8 through 11. Data from the two tests are represented by

different symbols. As an additional example of wing twist, a plot comparing air runs made

at different dynamic pressures is presented in figure 12 for Y/b/2 = 0.922. The Mach

number and total pressure were varied to give the desired dynamic pressure. The error

bars represent plus and minus one standard deviation as computed from the least squares

conformal transformation (6).

Y/b/2 = 0.635 0.778 0.922

M Q , mean .... .a .................mean. ....... .a ........... mean a
....... ....... 0.022 -0.013 0.030 ......... .........

0.6 534 -0.004 0.059 0.013 0.071 0.011 0.049

0.3 805 0.022 0.093 0.017 0.109 0.026 0.087

0.9 967 0.001 0.027 -0.016 0.026 -0.005 0.047

Table 6. Test-to-test repeatability in degrees during air mode. Units for dynamic pressure

Q are psf.

Wing twist measurements at cryogenic conditions have been limited by frosting on the

inside surface of the window of the camera protective housing. In the past, the amount of

window frosting gradually increased as the tunnel remained cold for long periods of time

causing a degradation in video imagery. Additional wing twist data are needed before the

run-to-run and test-to-test repeatability under cryogenic conditions can be evaluated.

Preliminary wing twist data for two runs under cryogenic conditions are presented in

figures 13 and 14. The data are for nitrogen runs at -152 ° F and -250 ° F at a semispan

location of 0.922. For figure 13 the Mach number was 0.6 and the dynamic pressure was

2670 psf. For figure 14 the Mach number was 0.9 and the dynamic pressure was 1795

psf. The error bars in figures 13 through 14 also represent the standard deviation

computed in the least squares conformal transformation (6). Recent improvements during

a facility upgrade are expected to improve viewing conditions and flexibility under

cryogenic operation and should increase the quality of video data at low temperatures.

FUTURE WORK

Future efforts are expected to include a detailed uncertainty analysis, comparisons

between predicted and measured wing twist, and the development of a measurement

system for on-line data recording and reduction to provide a nearly automated system. A

frame grabber board with dual TMS320C40 digital signal processors is expected to enable

data reduction nearly simultaneous to image capture. In addition, innovations are sought

13



to obtainhighcontrast,durablewing targetswhich do not exceed the surface finish

requirements at the NTF. The surface finish of models at the NTF can approach l0

microinches, resulting in a "mirror like" surface. Thus images of the wing surface may

also contain additional artifacts produced by reflections of a wall or ceiling. In order to

successfully automate the wing twist measurement at the NTF high contrast targets are

needed which do not exceed the surface finish requirements. These targets should be fiat-

white solid-filled circles on a fiat-black background or the opposite contrast. The

currently applied Sharpie ® marking pen black targets are neither high contrast nor durable.

In addition, some customers of the facility would prefer not to apply the targets due to

uncertainty about the effects of the targets on aerodynamic performance; however, results

to date do not indicate a measurable adverse effect. Targets applied by a chemical etching

technique would be durable, but of low contrast. Gun bluing could also produce durable

targets on at least some of the materials used for models at the NTF, but would still

produce low contrast targets and have the additional problem of being a "controlled

rusting process". Ideas for a suitable target application method at the NTF are solicited.

SUMMARY

The history of the development of a model deformation measurement capability for the

National Transonic Facility has been presented. The rationale for the current single

camera photogrammetric technique with emphasis on the measurement of wing twist has

been presented. The experimental procedure and equations for data reduction have been

given. Examples of the measurement of wing twist along with error considerations were

given. It has been speculated that the uncertainty for wing twist equivalent to 0.01 ° model

pitch angle may be of the order of 0.05 °. The wind-offnon-cryogenic 1-sigma error in the

measurement technique was shown to be less than 0.03 °. Run-to-run repeatabilities in air

mode at Mach numbers up to 0.9 and dynamic pressures up to 965 psfwere shown to be

better than 0.02 ° . Upright and inverted runs agreed to within 0.05 ° . Test-to-test

repeatabilities of better than 0.03 ° were also noted. Wing twist measurement examples

were presented at tunnel total temperatures of-152 ° F and -250 ° F. Future efforts include

the use of frame grabbers with onboad digital signal processors and the development of

high contrast targets suitable for cryogenic operation which do not exceed the surface

finish requirements necessary at the NTF. These efforts should aid in the automation of

the measurement.
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Figure 1. Wing twist camera location at the NTF.
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Figure 2. Wing twist camera view. Flow axis is vertical.
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Figure 3. Error in measuring wing twist without flow using a wind-offrun from the

previous day as reference. The "error bars" in the figure represent the computed standard

deviation from the conformal least squares adjustment for each data point.
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Figure 4. One sigma repeatability corresponding to Table 2 for air runs at Mach = 0.3 and

dynamic pressure = 153 ps£ Y/b/2 = 0.922.
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Figure 5. One sigma repeatability corresponding to Table 3 for air runs at Mach = 0.9 and
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• 15 24, 30, 32, 34 Y/b/2 : 0.922

0

):

-.15
c-

]:

_0

D o

O0 o
0

o

-.3 i j i i t i

-5 0 5 t0 _5 20 25

ALPHA, deg

Figure 6. Mean wing twist corresponding to Table 2 for air runs at Mach = 0.3 and

dynamic pressure ffi 153 psf. The standard deviations of the scatter are plotted as error
bars if greater than the symbol size. Y/b/2 = 0.922.
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Figure 7. Mean wing twist corresponding to Table 2 for air runs at Mach = 0.9 and

dynamic pressure = 965 psf The standard deviations of the scatter are plotted as error

bars if greater than the symbol size. Y/b/2 = 0.922.
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Figure 8. Wing twist corresponding to Table 6 for an air run at M = 0.3 and dynamic

pressure = 154 psf Y/b/2 = 0.922.
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Figure 9. Wing twist corresponding to Table 6 for an air run at M = 0.6 and dynamic

pressure = 534 psf. Y/b/2 = 0.922.
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Figure 10. Wing twist corresponding to Table 6 for an air run at M = 0.3 and dynamic

pressure = 804 psi'. Y/b/2 -- 0.922.
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Figure 11. Wing twist corresponding to Table 6 for an air run at M = 0.9 and dynamic
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1 Y/b/2 = 0.922 (run 23)
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Figure 13. Wing twist for a nitrogen run at -152 F, Mach number of 0.6, and dynamic

pressure of 2670 psf. Y/b/2 = 0.922.
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Figure 14. Wing twist for a nitrogen run at -250 F, Mach number of 0.9, and dynamic

pressure = 1795 psf. Y/b/2 = 0.922.
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